EPPS 6356 Assignment 5

# Setting up the new R environment, starting fresh, click run!
rm(list=ls())
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0      ✔ purrr   0.3.4 
✔ tibble  3.1.6      ✔ dplyr   1.0.10
✔ tidyr   1.2.0      ✔ stringr 1.4.0 
✔ readr   2.1.1      ✔ forcats 0.5.1 
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
# Horizontal Bar Plot
head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution", horiz=TRUE, names.arg=c("3 Gears", "4 Gears", "5 Gears"))

# Column Chart
summary_data <- tapply(mtcars$hp, list(cylinders = mtcars$cyl, transmission = mtcars$am), FUN = mean, na.rm = TRUE)

par(mar = c(5, 5, 4, 10))

barplot(summary_data, xlab = "Transmission type",
        main = "Horsepower Mean",
        col = rainbow(3),
        beside = TRUE,
        legend.text = rownames(summary_data),
        args.legend = list(title = "Cylinders", x = "topright",
                           inset = c(-0.20, 0)))

# Radar Chart
library(fmsb)
exam_scores <- data.frame(
    row.names = c("Student.1", "Student.2", "Student.3"),
      Biology = c(7.9, 3.9, 9.4),
      Physics = c(10, 20, 0),
        Maths = c(3.7, 11.5, 2.5),
        Sport = c(8.7, 20, 4),
      English = c(7.9, 7.2, 12.4),
    Geography = c(6.4, 10.5, 6.5),
          Art = c(2.4, 0.2, 9.8),
  Programming = c(0, 0, 20),
        Music = c(20, 20, 20)
)

# Define the variable ranges: maximum and minimum
max_min <- data.frame(
  Biology = c(20, 0), Physics = c(20, 0), Maths = c(20, 0),
  Sport = c(20, 0), English = c(20, 0), Geography = c(20, 0),
  Art = c(20, 0), Programming = c(20, 0), Music = c(20, 0)
)
rownames(max_min) <- c("Max", "Min")

# Bind the variable ranges to the data
df2 <- rbind(max_min, exam_scores)
df2
          Biology Physics Maths Sport English Geography  Art Programming Music
Max          20.0      20  20.0  20.0    20.0      20.0 20.0          20    20
Min           0.0       0   0.0   0.0     0.0       0.0  0.0           0     0
Student.1     7.9      10   3.7   8.7     7.9       6.4  2.4           0    20
Student.2     3.9      20  11.5  20.0     7.2      10.5  0.2           0    20
Student.3     9.4       0   2.5   4.0    12.4       6.5  9.8          20    20
# Generating radar chart
student1_data <- df2[c("Max", "Min", "Student.1"), ]
radarchart(student1_data)